Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Neurosci Lett ; 826: 137715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460902

RESUMO

The striatum, an essential component of the brain's motor and reward systems, plays a pivotal role in a wide array of cognitive processes. Its dysfunction is a hallmark of neurodegenerative diseases like Parkinson's disease (PD) and Huntington's disease (HD), leading to profound motor and cognitive deficits. These conditions are often related to excitotoxicity, primarily due to overactivation of NMDA receptors (NMDAR). In the synaptic cleft, glycine transporter type 1 (GlyT1) controls the glycine levels, a NMDAR co-agonist, which modulates NMDAR function. This research explored the neuroprotective potential of NFPS, a GlyT1 inhibitor, in murine models of striatal injury. Employing models of neurotoxicity induced by 6-hydroxydopamine (PD model) and quinolinic acid (HD model), we assessed the effectiveness of NFPS pre-treatment in maintaining the integrity of striatal neurons and averting neuronal degeneration. The results indicated that NFPS pre-treatment conferred significant neuroprotection, reducing neuronal degeneration, protecting dopaminergic neurons, and preserving dendritic spines within the striatum. Additionally, this pre-treatment notably mitigated motor impairments resulting from striatal damage. The study revealed that GlyT1 inhibition led to substantial changes in the ratios of NMDAR subunits GluN2A/GluN1 and GluN2B/GluN1, 24 h after NFPS treatment. These findings underscore the neuroprotective efficacy of GlyT1 inhibition, proposing it as a viable therapeutic strategy for striatum-related damage.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Doença de Huntington , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Sarcosina/farmacologia , Neuroproteção , Glicina/farmacologia , Corpo Estriado/metabolismo , Doença de Huntington/tratamento farmacológico
2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003554

RESUMO

N-methyl-glycine (sarcosine) is known to promote metastatic potential in some cancers; however, its effects on bladder cancer are unclear. T24 cells derived from invasive cancer highly expressed GNMT, and S-adenosyl methionine (SAM) treatment increased sarcosine production, promoting proliferation, invasion, anti-apoptotic survival, sphere formation, and drug resistance. In contrast, RT4 cells derived from non-invasive cancers expressed low GNMT, and SAM treatment did not produce sarcosine and did not promote malignant phenotypes. In T24 cells, the expression of miR-873-5p, which suppresses GNMT expression, was suppressed, and the expression of ERVK13-1, which sponges miR-873-5p, was increased. The growth of subcutaneous tumors, lung metastasis, and intratumoral GNMT expression in SAM-treated nude mice was suppressed in T24 cells with ERVK13-1 knockdown but promoted in RT4 cells treated with miR-873-5p inhibitor. An increase in mouse urinary sarcosine levels was observed to correlate with tumor weight. Immunostaining of 86 human bladder cancer cases showed that GNMT expression was higher in cases with muscle invasion and metastasis. Additionally, urinary sarcosine concentrations increased in cases of muscle invasion. Notably, urinary sarcosine concentration may serve as a marker for muscle invasion in bladder cancer; however, further investigation is necessitated.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Sarcosina/farmacologia , Camundongos Nus , S-Adenosilmetionina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular
3.
Biosci Biotechnol Biochem ; 87(8): 916-924, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37259192

RESUMO

Corynebacterium glutamicum AJ1511 and Escherichia coli BW25113 strains were compared in terms of resistance to sarcosine (N-methylglycine). The E. coli strain was more sensitive to sarcosine than C. glutamicum, especially when grown in minimal medium. Growth inhibition of the BW25113 strain in minimal M9 medium containing 0.5 m sarcosine was overcome by the addition of glycine. Inactivation of the glycine cleavage (GCV) system (∆gcvP) as well as the removal of its activator (∆gcvA) in BW25113 cells increased the threshold for sarcosine inhibition up to 0.75 m. Activation of the promoter of the E. coli gcvTHP operon by 0.1-0.4 m sarcosine added to M9 medium was demonstrated in vivo using dasherGFP as the reporter. Sensitivity to sarcosine on glucose minimal medium is suggested to be a characteristic of Gram-negative bacteria with GcvA/GcvR regulation of the GCV system.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Fatores de Transcrição , Proteínas de Ligação a DNA , Sarcosina/farmacologia , Proteínas de Bactérias , Glicina/farmacologia
4.
Neurosci Lett ; 802: 137175, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907265

RESUMO

Pentobarbital-induced anesthesia is believed to be mediated by enhancement of the inhibitory action of γ-aminobutyric acid (GABA)ergic neurons in the central nervous system. However, it is unclear whether all components of anesthesia induced by pentobarbital, such as muscle relaxation, unconsciousness, and immobility in response to noxious stimuli, are mediated only through GABAergic neurons. Thus, we examined whether the indirect GABA and glycine receptor agonists gabaculine and sarcosine, respectively, the neuronal nicotinic acetylcholine receptor antagonist mecamylamine, or the N-methyl-d-aspartate receptor channel blocker MK-801 could enhance pentobarbital-induced components of anesthesia. Muscle relaxation, unconsciousness, and immobility were evaluated by grip strength, the righting reflex, and loss of movement in response to nociceptive tail clamping, respectively, in mice. Pentobarbital reduced grip strength, impaired the righting reflex, and induced immobility in a dose-dependent manner. The change in each behavior induced by pentobarbital was roughly consistent with that in electroencephalographic power. A low dose of gabaculine, which significantly increased endogenous GABA levels in the central nervous system but had no effect on behaviors alone, potentiated muscle relaxation, unconsciousness, and immobility induced by low pentobarbital doses. A low dose of MK-801 augmented only the masked muscle-relaxing effects of pentobarbital among these components. Sarcosine enhanced only pentobarbital-induced immobility. Conversely, mecamylamine had no effect on any behavior. These findings suggest that each component of anesthesia induced by pentobarbital is mediated through GABAergic neurons and that pentobarbital-induced muscle relaxation and immobility may partially be associated with N-methyl-d-aspartate receptor antagonism and glycinergic neuron activation, respectively.


Assuntos
Pentobarbital , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Pentobarbital/farmacologia , Maleato de Dizocilpina/farmacologia , Sarcosina/farmacologia , Mecamilamina , Ácido gama-Aminobutírico , Inconsciência
5.
Exp Brain Res ; 241(2): 451-467, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577922

RESUMO

Schizophrenia is a neurological disorder that alters the behavior and affects the quality of life of a patient. It is characterized by hallucinations, disorganized behavior, cognitive dysfunction, hyperlocomotion, and loss of the reward system. Schizophrenia constitutes three symptoms' domains, viz. positive, negative and cognitive. Typical and atypical antipsychotics do not fully resolve all the symptoms' domains thus paving the way to the genesis of the glutamatergic hypothesis, i.e. N-methyl-D-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Positive modulation of NMDA receptors by enhancing co-agonist, glycine effect is proposed to produce a therapeutic effect in schizophrenia. Hence, sarcosine (N-methyl glycine), natural amino acid, and a glycine transporter inhibitor (GlyT-1) which also acts on NMDA receptors were used in the present study. The present study unravels the role of sarcosine in the attenuation of ketamine-induced three symptom domains in a rat model through modulation of oxidative stress, mitochondrial dysfunction, and neuroinflammatory pathways. The animal model of schizophrenia was established by injecting ketamine intraperitoneal (ip) at a 30 mg/kg dose for 10 consecutive days, after which sarcosine (300, 600 mg/kg, ip) as a treatment was given for 7 days followed by behavioral, biochemical, molecular, and histopathological analysis. It was revealed that sarcosine reversed ketamine-induced behavioral impairments. Moreover, sarcosine ameliorated oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation and showed protective effects in histopathological examination by hematoxylin and eosin staining. Hence, conclusively, sarcosine was regarded to attenuate the behavioural symptoms of schizophrenia by alleviating oxidative stress, neuroinflammation, and mitochondrial dysfunction established by the ketamine.


Assuntos
Ketamina , Esquizofrenia , Ratos , Animais , Sarcosina/farmacologia , Sarcosina/uso terapêutico , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Glicina , Ketamina/farmacologia , Ketamina/uso terapêutico , Receptores de N-Metil-D-Aspartato , Doenças Neuroinflamatórias , Qualidade de Vida
6.
Neuropharmacology ; 223: 109351, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423705

RESUMO

Studies have demonstrated the beneficial therapeutic effects of sarcosine, benzoate, and ketamine (including esketamine and arketamine) on depression. These drugs mainly act by modulating N-methyl-d-aspartate glutamate receptors (NMDARs) and reducing inflammation in the brain. Although ketamine, benzoate, and sarcosine act differently as the antagonists or coagonists of NMDARs, they all have demonstrated efficacy in animal models or human trials. In vitro and in vivo studies have indicated that sarcosine, benzoate, and ketamine exert their anti-inflammatory effects by inhibiting microglial activity. This review summarizes and compares the efficacy of the possible therapeutic mechanisms of sarcosine, benzoate, ketamine, esketamine, and arketamine. These compounds act as both NMDAR modulators and anti-inflammatory drugs and thus can be effective in the treatment of depression.


Assuntos
Ketamina , Sarcosina , Animais , Humanos , Sarcosina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Benzoatos , Ketamina/farmacologia , Ketamina/uso terapêutico , Receptores de N-Metil-D-Aspartato , Depressão/tratamento farmacológico
7.
Biomed Res Int ; 2022: 5467498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36281465

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by behavioral and psychological symptoms in addition to cognitive impairment and loss of memory. The exact pathogenesis and genetic background of AD are unclear and there remains no effective treatment option. Sarcosine, an n-methyl derivative of glycine, showed a promising therapeutic strategy for some cognitive disorders. To our knowledge, the impacts of sarcosine supplementation against AD have not yet been elucidated. Therefore, we aimed to determine the neuroprotective potential of sarcosine in in vitro and in vivo AD model. In vitro studies have demonstrated that sarcosine increased the percentage of viable cells against aluminum induced neurotoxicity. In AlCl3-induced rat model of AD, the level of antioxidant capacity was significantly decreased and expression levels of APP, BACE1, TNF-α, APH1A, and PSENEN genes were elevated compared to the control group. Additionally, histopathological examinations of the hippocampus of AlCl3-induced rat brains showed the presence of neurofibrillary tangles (NFTs). However, the administration of sarcosine produced marked improvement and protection of AD-associated pathologies induced by AlCl3 in experimental rats. Therefore, this investigation may contribute to design novel therapeutic strategies using sarcosine for the management of AD pathologies.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Cloreto de Alumínio , Sarcosina/farmacologia , Sarcosina/uso terapêutico , Antioxidantes/farmacologia , Secretases da Proteína Precursora do Amiloide , Fator de Necrose Tumoral alfa , Alumínio/uso terapêutico , Ratos Wistar , Ácido Aspártico Endopeptidases , Doença de Alzheimer/metabolismo
8.
Free Radic Biol Med ; 184: 89-98, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405266

RESUMO

The objectives of this study were focused on the mechanism of mitochondrial dysfunction in skeletal muscle stem cells (MuSCs) from intrauterine growth restriction (IUGR) newborn piglets, and the relief of dimethylglycine sodium salt (DMG-Na) on MuSCs mitochondrial dysfunction by Nrf2/SIRT1/PGC1α network. In this study, six newborn piglets with normal birth weight (NBW) and six IUGR newborn piglets were slaughtered immediately after birth to obtain longissimus dorsi muscle (LM) samples. MuSCs were collected and divided into three groups: MuSCs from NBW newborn piglets (N), MuSCs from IUGR newborn piglets (I), and MuSCs from IUGR newborn piglets with 32 µmol DMG-Na (ID). Compared with the NBW group, the IUGR group showed decreased (P < 0.05) serum and LM antioxidant defense capacity, and increased (P < 0.05) serum and LM damage. Compared with the N group, the I group showed decreased (P < 0.05) MuSCs antioxidant defense capacity, mitochondrial ETC complexes, energy metabolites, and antioxidant defense-related and mitochondrial function-related gene and protein expression levels. The antioxidant defense capacity, mitochondrial ETC complexes, energy metabolites, and antioxidant defense-related and mitochondrial function-related gene and protein expression levels of MuSCs were improved (P < 0.05) in the ID group compared to those in the I group. The MuSCs of IUGR newborns activate the Nrf2/SIRT1/PGC1α network by taking in DMG-Na, thereby neutralizing excessive generated O2•- that may help to improve their unfavorable mitochondrial dysfunction in skeletal muscle.


Assuntos
Retardo do Crescimento Fetal , Mioblastos , Fator 2 Relacionado a NF-E2 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sarcosina , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Retardo do Crescimento Fetal/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sódio/metabolismo , Células-Tronco , Suínos
9.
Eur J Pharmacol ; 910: 174452, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34480885

RESUMO

Dyskinesia and psychosis are complications encountered in advanced Parkinson's disease (PD) following long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA). Disturbances in the glutamatergic system have been associated with both dyskinesia and psychosis, making glutamatergic modulation a potential therapeutic approach for these. Treatments thus far have sought to dampen glutamatergic transmission, for example through blockade of N-methyl-D-aspartate (NMDA) receptors or modulation of metabotropic glutamate receptors 5. In contrast, activation of the glycine-binding site on NMDA receptors is required for their physiological response. Here, we investigated whether indirectly enhancing glutamatergic transmission through inhibition of glycine re-uptake would be efficacious in diminishing both dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned common marmoset. Six marmosets were rendered parkinsonian by MPTP injection. Following repeated administration of L-DOPA to induce dyskinesia and PLBs, they underwent acute challenges of the glycine transporter 1 (GlyT1) inhibitor ALX-5407 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA, after which the severity of dyskinesia, PLBs and parkinsonian disability was evaluated. In combination with L-DOPA, ALX-5407 0.1 and 1 mg/kg significantly reduced the severity of dyskinesia, by 51% and 41% (both P < 0.001), when compared to vehicle. ALX-5407 0.01, 0.1 and 1 mg/kg also decreased the severity of global PLBs, by 25%, 51% and 38% (all P < 0.001), when compared to vehicle. The benefits on dyskinesia and PLBs were achieved without compromising the therapeutic effect of L-DOPA on parkinsonism. Our results suggest that GlyT1 inhibition may be a novel strategy to attenuate dyskinesia and PLBs in PD, without interfering with L-DOPA anti-parkinsonian action.


Assuntos
Antiparkinsonianos/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Transtornos Parkinsonianos/tratamento farmacológico , Psicoses Induzidas por Substâncias/tratamento farmacológico , Sarcosina/análogos & derivados , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Antiparkinsonianos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Callithrix , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/complicações , Feminino , Levodopa/efeitos adversos , Levodopa/farmacologia , Levodopa/uso terapêutico , Intoxicação por MPTP , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Psicoses Induzidas por Substâncias/complicações , Sarcosina/farmacologia , Sarcosina/uso terapêutico
10.
J Pept Sci ; 27(12): e3360, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34164880

RESUMO

Antimicrobial peptides (AMPs) are potential therapeutic agents against bacteria. We recently showed that a rationally designed AMP, termed Stripe, with an amphipathic distribution of native cationic and hydrophobic amino acids on its helical structure exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria with negligible hemolytic activity and cytotoxicity. In this study, the structure-activity relationship of Stripe was elucidated by designing a series of antimicrobial peptides whereby amino acid residues of Stripe were exchanged with helix-destabilizing sarcosine residues. Stripe 1-5 peptides with hydrophobic amino acids substituted with sarcosine were predominantly unstructured and showed no antimicrobial activity, except against Escherichia coli (E. coli) (DH5α) cells. The activity against E. coli (DH5α) cells and the helicity of Stripe 1-5 peptides decreased concomitantly as the number of sarcosine residue substitutions increased. Stripe 1-5 peptides showed no hemolytic activity or cytotoxicity. The results indicate that sarcosine substitutions provide an approach to study the structure-activity relationship of helical AMPs, and the helicity of Stripe is an important feature defining its activity.


Assuntos
Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Escherichia coli , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Sarcosina/farmacologia , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804568

RESUMO

The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Glicina/líquido cefalorraquidiano , Hiperalgesia/prevenção & controle , Neuralgia/tratamento farmacológico , Sarcosina/análogos & derivados , Animais , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Atividade Motora , Neuralgia/metabolismo , Neuralgia/patologia , Ratos , Ratos Wistar , Sarcosina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
12.
Expert Opin Drug Metab Toxicol ; 17(4): 483-493, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33538213

RESUMO

Background: N-methyl-glycine (sarcosine) may improve symptoms of schizophrenia via NMDA-receptor modulation. We undertook a systematic review and meta-analysis to determine the short- and long-term effectiveness of sarcosine for schizophrenia.Research design and methods: The databases Medline, Scopus, EMBASE, Cochrane Library, and PsycINFO were searched. We included six independent randomized controlled trials of sarcosine as add-on treatment to current antipsychotic medication, involving 234 adult participants with schizophrenia, and reporting data on symptom severity. Standardized mean differences (SMDs) were used to assess continuous outcomes.Results: In all of the trials, sarcosine was administered orally at 2 g/day. Treatment with sarcosine did not show a significant effect size at any of the pre-established time points (2, 4, 6, or >6 weeks), due to marked quantitative heterogeneity. However, sarcosine was associated with significant reductions of symptom severity in the subgroups of people with chronic schizophrenia and no treatment resistance (namely, without added-on clozapine) in relation to the SMD after 6 weeks treatment at -0.36 and -0.31, respectively.Conclusions: People with chronic and non-refractory schizophrenia may benefit from the use of sarcosine as an add-on treatment to antipsychotic medication. Due to the good tolerability of this compound, future trials with larger sample sizes appear worthwhile.


Assuntos
Antipsicóticos/administração & dosagem , Sarcosina/administração & dosagem , Esquizofrenia/tratamento farmacológico , Adulto , Quimioterapia Combinada , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sarcosina/efeitos adversos , Sarcosina/farmacologia , Esquizofrenia/fisiopatologia , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
13.
Toxicology ; 446: 152613, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086094

RESUMO

Toluene intoxication produces deleterious effects on cognitive function, which has been associated with the inhibition of N-methyl-d-aspartate receptor (NMDAR). The present study determined whether N,N-dimethylglycine (DMG), a nutrient supplement and a partial agonist for NMDAR glycine binding site, could counteract recognition memory deficits and hippocampal synaptic dysfunction after acute toluene exposure. Male ICR mice were treated with toluene (250-750 mg/kg) for monitoring the sociability and social novelty in three-chamber test and long-term potentiation (LTP) of hippocampal synaptic transmission. Moreover, the combined effects of DMG (30-100 mg/kg) pretreatment with toluene (750 mg/kg) on three-chamber test, novel location and object recognition test and synaptic function were determined. Toluene decreased the sociability, preference for social novelty, hippocampal synaptic transmission and LTP in a dose-dependent manner. DMG pretreatment significantly reduced the toluene-induced memory impairment in social recognition, object location and object recognition and synaptic dysfunction. Furthermore, NMDAR glycine binding site antagonist, 7-chlorokynurenic acid, abolished the protective effects of DMG. These results indicate that DMG could prevent toluene-induced recognition memory deficits and synaptic dysfunction and its beneficial effects might be associated with modulation of NMDAR. These findings suggest that DMG supplementation might be an effective approach to prevent memory problems for the workers at risk of high-level toluene exposure or toluene abusers.


Assuntos
Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Plasticidade Neuronal/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Sarcosina/análogos & derivados , Tolueno/toxicidade , Animais , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos ICR , Plasticidade Neuronal/fisiologia , Reconhecimento Psicológico/fisiologia , Sarcosina/farmacologia , Sarcosina/uso terapêutico , Solventes/toxicidade
15.
Cell Chem Biol ; 27(7): 850-857.e6, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32442423

RESUMO

Aberrant chromosome numbers in cancer cells may impose distinct constraints on the emergence of drug resistance-a major factor limiting the long-term efficacy of molecularly targeted therapeutics. However, for most anticancer drugs we lack analyses of drug-resistance mechanisms in cells with different karyotypes. Here, we focus on GSK923295, a mitotic kinesin CENP-E inhibitor that was evaluated in clinical trials as a cancer therapeutic. We performed unbiased selections to isolate inhibitor-resistant clones in diploid and near-haploid cancer cell lines. In diploid cells we identified single-point mutations that can suppress inhibitor binding. In contrast,transcriptome analyses revealed that the C-terminus of CENP-E was disrupted in GSK923295-resistant near-haploid cells. While chemical inhibition of CENP-E is toxic to near-haploid cells, knockout of the CENPE gene does not suppress haploid cell proliferation, suggesting that deletion of the CENP-E C-terminus can confer resistance to GSK923295. Together, these findings indicate that different chromosome copy numbers in cells can alter epistatic dependencies and lead to distinct modes of chemotype-specific resistance.


Assuntos
Antineoplásicos/farmacologia , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Diploide , Haploidia , Heterozigoto , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Domínios Proteicos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sarcosina/análogos & derivados , Sarcosina/farmacologia
16.
J Psychopharmacol ; 34(5): 495-505, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32122256

RESUMO

BACKGROUND: Sarcosine (N-methylglycine), a type 1 glycine transporter inhibitor (GlyT1), has shown therapeutic potential for treating schizophrenia; however, studies have reported conflicting results. This meta-analysis aimed to explore the efficacy and cognitive effect of sarcosine for schizophrenia. METHODS: In this study, PubMed, Cochrane Systematic Reviews, and Cochrane Collaboration Central Register of Controlled Clinical Trials were searched electronically for double-blinded randomised controlled trials that used sarcosine for treating schizophrenia. We used the published trials up to November 2019 to investigate the efficacy of sarcosine in schizophrenia. We pooled studies by using a random-effect model for comparing sarcosine treatment effects. Patients who were diagnosed with schizophrenia according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition were recruited. Clinical improvement and cognitive function scores between baseline and after sarcosine use were compared using the standardised mean difference (SMD) with 95% confidence intervals (CIs). The heterogeneity of the included trials was evaluated through visual inspection of funnel plots and through the I2 statistic. RESULTS: We identified seven trials with 326 participants with schizophrenia meeting the inclusion criteria. All these studies evaluated the overall clinical symptoms, and four of them evaluated overall cognitive functions. Sarcosine use achieved more significant effects than the use of its comparators in relieving overall clinical symptoms (SMD = 0.51, CI = 0.26-0.76, p < 0.01). Moreover, studies with the low Positive and Negative Syndrome Scale range of 70-79 showed significant effect size (ES)s of 0.67 (95% CI: 0.03-1.31, p = 0.04). In addition, trials enrolling patients with stable clinical symptoms had significant ESs: 0.53 (95% CI: 0.21-0.85, p < 0.01). Add-on sarcosine combined with first- and second-generation antipsychotics, except clozapine, had a positive effect. For overall cognitive functions, sarcosine showed a positive but insignificant effect compared with its comparators (SMD = 0.27, CI = -0.06 to 0.60, p = 0.10). The effects were correlated with increased female proportions and decreased illness duration, albeit nonsignificantly. CONCLUSIONS: The meta-analysis suggests that sarcosine may be associated with treatment effect on overall clinical symptoms in patients with schizophrenia but not cognitive functions.


Assuntos
Cognição/efeitos dos fármacos , Sarcosina/farmacologia , Esquizofrenia/tratamento farmacológico , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacologia , Quimioterapia Combinada , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sarcosina/administração & dosagem , Esquizofrenia/fisiopatologia
17.
Mol Neurobiol ; 57(5): 2144-2166, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31960362

RESUMO

Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40-200 mg/kg) and ORG24598 (0.63-5 mg/kg), the agonists, glycine (40-800 mg/kg), and D-serine (10-160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5-40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5-10 µg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Glicinérgicos/farmacologia , Glicina/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/farmacologia , Nootrópicos/farmacologia , Aminoácidos/análise , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Ciclosserina/farmacologia , Relação Dose-Resposta a Droga , Reação de Congelamento Cataléptica/efeitos dos fármacos , Glicina/agonistas , Glicina/análogos & derivados , Glicina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Glicina/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Sarcosina/farmacologia , Esquizofrenia/tratamento farmacológico , Escopolamina/antagonistas & inibidores , Serina/farmacologia , Comportamento Social
18.
Colloids Surf B Biointerfaces ; 188: 110791, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955019

RESUMO

The main objective of the present study was the preparation and characterization of new cationic/anionic surfactants and Cu2+/Zn2+ modified montmorillonites and the evaluation of their potential applicability as antibacterial agents for topical applications. To evaluate the antibacterial activity of Cu2+ and Zn2+ by synergistic effect, as well as to reduce the well-known toxicity of these metal cations; cetylpyridinium (CP) and N-lauroylsarcosinate (SR) intercalated montmorillonite (Mt-CP-SR) was used as the host material. In addition to their role to capture the metal cations and inhibit their release in any contact medium, these surfactants also increase the efficacy of the material due to their antibacterial properties. The effect of surfactant loading on the adsorption behavior of the metal cations onto the Mt-CP was investigated using SR in two different concentrations, namely 0.7 and 1.0 CEC of sodium montmorillonite (Mt-Na). The samples prepared were characterized using SEM, ATR-FTIR, zeta potential, and XRD analyses and they were subjected to antibacterial tests using the "Standard Method Under Dynamic Contact Conditions" on the Gram positive S. aureus, and Gram negative E. coli. As confirmed with desorption and characterization studies, the addition of Cu2+/Zn2+ onto the Mt-CP-SR yielded double adsorbed amounts compared to that of the Mt-CP, which indicated that Cu2+/Zn2+ bound to SR- interacted with the Mt surface. In contrary of Zn2+ caused no considerable change in the antibacterial effect of the host, Cu2+ addition enhanced the antibacterial activity. The produced antibacterial agents have the potential use in dyes, polymer composites, personal care products, and topical medicinal applications.


Assuntos
Antibacterianos/farmacologia , Bentonita/farmacologia , Cetilpiridínio/farmacologia , Cobre/farmacologia , Sarcosina/análogos & derivados , Zinco/farmacologia , Adsorção , Antibacterianos/síntese química , Antibacterianos/química , Bentonita/química , Cetilpiridínio/química , Cobre/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Sarcosina/química , Sarcosina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Zinco/química
19.
BMC Ophthalmol ; 20(1): 28, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941474

RESUMO

BACKGROUND: Corneal infections with antibiotic-resistant microorganisms are an increasingly difficult management challenge and chemically or photochemically cross-linking the cornea for therapy presents a unique approach to managing such infections since both direct microbial pathogens killing and matrix stabilization can occur simultaneously. The present study was undertaken in order to compare the anti-microbial efficacy, in vitro, of 5 candidate cross-linking solutions against 5 different microbial pathogens with relevance to infectious keratitis. METHODS: In vitro bactericidal efficacy studies were carried out using 5 different FARs [diazolidinyl urea (DAU), 1,3-bis(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione (DMDM), sodium hydroxymethylglycinate (SMG), 2-(hydroxymethyl)-2-nitro-1,3-propanediol (NT = nitrotriol), 2-nitro-1-propanol (NP)] against 5 different microbial pathogens including two antibiotic-resistant species [methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Pseudomonas aeruginosa (PA), and Candida albicans (CA)]. Standard in vitro antimicrobial testing methods were used. RESULTS: The results for MSSA were similar to those for MRSA. DAU, DMDM, and SMG all showed effectiveness with greater effects generally observed with longer incubation times and higher concentrations. Against MRSA, 40 mM SMG at 120 min showed a > 95% kill rate, p < 0.02. Against VRE, 40 mM DAU for 120 min showed a > 94% kill rate, p < 0.001. All FARs showed bactericidal effect against Pseudomonas aeruginosa, making PA the most susceptible of the strains tested. Candida showed relative resistance to these compounds, requiring high concentrations (100 mM) to achieve kill rates greater than 50%. CONCLUSION: Our results show that each FAR compound has different effects against different cultures. Our antimicrobial armamentarium could potentially be broadened by DAU, DMDM, SMG and other FARs for antibiotic-resistant keratitis. Further testing in live animal models are indicated.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Formaldeído/metabolismo , Úlcera da Córnea/tratamento farmacológico , Úlcera da Córnea/microbiologia , Resistência a Medicamentos , Farmacorresistência Bacteriana , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Testes de Sensibilidade Microbiana , Nitrocompostos/farmacologia , Propanóis/farmacologia , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Trometamina/análogos & derivados , Trometamina/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
20.
Behav Brain Res ; 378: 112293, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31610215

RESUMO

Coloboma, heart defects, choanal atresia, restricted growth and development, genital hypoplasia, ear abnormalities and/or hearing loss (CHARGE) syndrome is a congenital disorder that is mainly caused by mutations within chromodomain helicase DNA-binding protein 7 (chd7). Behavioral abnormalities have been addressed in CHARGE syndrome, but the underlying mechanisms are still poorly understood. Here, we performed four behavioral tests-including the open-field test, novel-tank test, shoaling test and mirror-induced attack test-in chd7 heterozygous zebrafish mutants in order to characterize the behavioral abnormalities in a zebrafish model of CHARGE syndrome. We found that chd7 heterozygous mutants exhibited anxious-like behavior and aggressive-like behavior in the open-field test and in the mirror-induced attack test, respectively, which resembled the reported behavioral abnormalities in CHARGE syndrome in humans. Moreover, we found that glycine and D-cycloserine treatment rescued the aggressive behavior of chd7 heterozygous zebrafish mutants, indicating that the excitation and inhibition balance might be disrupted in the brains of chd7 heterozygous zebrafish mutants. Further analysis showed that the expression of glycine transporters was dramatically increased in the brains of chd7 heterozygous zebrafish mutants. Treatment with an inhibitor of glycine transporter 1, sarcosine, partially rescued the aggressive-like behavior of chd7 heterozygous zebrafish mutants. Taken together, our data suggest that the aggressive behavior in CHARGE syndrome may be due to the increased expression of glycine transporters, and inhibition of the activity of glycine transporters may be an approach to treat the behavioral abnormalities in CHARGE syndrome.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Sintomas Comportamentais/fisiopatologia , Encéfalo/metabolismo , Síndrome CHARGE/complicações , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Agressão/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Sintomas Comportamentais/tratamento farmacológico , Sintomas Comportamentais/etiologia , Encéfalo/efeitos dos fármacos , Ciclosserina/farmacologia , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Heterozigoto , Sarcosina/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...